EMIL L. SMITH

Transcript of an Interview
Conducted by
James J. Bohning
at
University of California, Los Angeles
on
19 June 1991 and 17 March 1994
(With Subsequent Additions and Corrections)
THE CHEMICAL HERITAGE FOUNDATION
Oral History Program

RELEASE FORM

This document contains my understanding and agreement with the Chemical Heritage Foundation with respect to my participation in a tape-recorded interview conducted by James J. Bohning on 19/6/91 and 17/3/94. I have read the transcript supplied by the Chemical Heritage Foundation and returned it with my corrections and emendations.

1. The tapes and corrected transcript (collectively called the "Work") will be maintained by the Chemical Heritage Foundation and made available in accordance with general policies for research and other scholarly purposes.

2. I hereby grant, assign, and transfer to the Chemical Heritage Foundation all right, title, and interest in the Work, including the literary rights and the copyright, except that I shall retain the right to copy, use and publish the Work in part or in full until my death.

3. The manuscript may be read and the tape(s) heard by scholars approved by the Chemical Heritage Foundation subject to the restrictions listed below. The scholar pledges not to quote from, cite, or reproduce by any means this material except with the written permission of the Chemical Heritage Foundation.

4. I wish to place the following conditions that I have checked below upon the use of this interview. I understand that the Chemical Heritage Foundation will enforce my wishes until the time of my death, when any restrictions will be removed.

 a. [] No restrictions for access.
 b. [] My permission required to quote, cite, or reproduce.
 c. [] My permission required for access to the entire document and all tapes.

This constitutes our entire and complete understanding.

(Signature)

Emil L. Smith

(Date)

June 14, 1994

(Revised 17 March 1993)
Upon Emil L. Smith’s death in 2009, this oral history was designated Free Access.

One may view, quote from, cite, or reproduce the oral history with the permission of CHF.

Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Oral History Program to notify CHF of publication and credit CHF using the format below:

Emil L. Smith, interview by James J. Bohning at the University of California, Los Angeles, Los Angeles, California, 19 June 1991 and 17 March 1994
(Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0096).
EMIL L. SMITH

1911 Born in New York City, New York, on July 5

Education
1931 B.S., biology, Columbia University
1937 Ph.D., zoology, Columbia University, (Mentor, S. Hecht)

Professional Experience
Columbia University
1931-1934 Teaching assistant, zoology department
1934-1936 Teaching assistant, biophysics
1936-1938 Instructor, biophysics

John Simon Guggenheim Memorial Fellow
1938-1939 Molteno Institute, Cambridge University (w/D. Keilin)
1939-1940 Yale University and the Connecticut Agricultural Experiment Station (w/H. B. Vickery)

1940-1942 Fellow, Rockefeller Institute for Medical Research (w/M. Bergmann)

1942-1946 Sr. Biochemist and Biophysicist, E.R. Squibb & Sons

University of Utah, College of Medicine
1946-1950 Associate Professor of Biochemistry
1950-1963 Professor of Biochemistry

Associate Professor of Medicine
Research Professor of Medicine
Head, Biochemical Section, Laboratory for the Study of Hereditary and Metabolic Disorders

1958-1959 Acting Chairman, Department of Biochemistry

University of California, Los Angeles
1963-1979 Professor and Chairman, School of Medicine, Department of Biological Chemistry
1979-
Professor Emeritus

Honors
1961 Distinguished Service Alumni Award, Columbia University
1962 Member, National Academy of Sciences
1964 Utah Award, American Chemical Society
1965 Member, American Academy of Arts and Sciences
1973 Member, American Philosophical Society
1982 Foreign Member, Academy of Sciences, USSR
1985 Fellow, UCLA School of Medicine
1987 Stein-Moore Award, The Protein Society
Emil Smith begins this interview by discussing his family background and childhood in New York City. Smith learned to play the saxophone during high school and later earned money for college by playing concerts on weekends and holidays. Attending Columbia University, he studied biology under Selig Hecht. In 1938, he received a Guggenheim fellowship to Cambridge University, where he worked in David Keilin's laboratory. The outbreak of World War II in Europe forced Smith to return to the U.S., where he worked at Yale, the Rockefeller Institute, and later, E. R. Squibb & Sons. Smith accepted a position at the University of Utah and was a faculty member in both the department of biochemistry and medicine. He was later chairman of biological chemistry at the UCLA School of Medicine. Smith concludes the first interview by describing his activities after retirement activities.

In the second interview, Smith describes his research interests, which have included work with peptidases, immunoglobulins, cytochromes, subtilisin, histones, and glutamate dehydrogenases. He discusses his involvement with the International Union of Biochemists and the American Chemical Society. Smith concludes this interview with a recollection of his meeting with Chou En-lai concerning scientific exchange between the United States and China.
TABLE OF CONTENTS

1 Family Background and Childhood in New York
 Parents emigration from Russia, meeting in New York,
 marriage. Father’s tailor shops. Early education.
 Interest in radio. Learning to play saxophone.

9 Columbia University
 Biology and chemistry classes. Assistantship
 in biology. Selig Hecht. Doctoral thesis. Paper in
 Leningrad and tour of Europe with wife. Collaboration
 with Simon Shlaer on Warburg's experiments. Work on
 chlorophyll-protein complex.

27 Cambridge University
 History of Molteno Institute and parasitology. David
 Keilin. World War II. Returning to Columbia to work
 with Pickels.

33 Rockefeller Institute
 Colleagues. U.S. entry in World War II.
 Responsibilities and assignments.

39 E. R. Squibb & Sons
 Assisting with penicillin research. Solving industry-
 related problems. Tillman Gerlough.

43 University of Utah
 University’s appropriation for muscular dystrophy
 research. Douglas Brown. Progress in biochemistry and
 protein chemistry. Serving on first NIH committee on
 training grants. Making rounds with medical students.
 Relationship between biochemistry and medicine.

57 Retirement
 Authoring several textbooks. University of Utah

65 Peptidase Research
 Work on the role of metal ions in hydrolytic enzyme
 Financial support. Changes in experimental methods
 in biochemistry. Role of protein in genetics. Nobel
 Prize politics.

75 Immunoglobulin Research
 Work on purification of cow milk antibodies.
 Immunological experiments during World War II.
 Decline of interest in intermediary metabolism.
 Laboratory staff and set-up. Colleagues. *Principles
 of Biochemistry.*
84
Cytochrome Research

88
Subtilisin Research
Collaboration with Hiroshi Matsubara on cytochrome c; new area of study. Importance of subtilisin to the manufacture of synthetic enzymes.

91
Histone Research

94
Consultation with Industry

98
Glutamate Dehydrogenase Research
Reasons for beginning work. Chicken enzyme. Neurospora enzyme. Colleagues and students.

100
Other Activities

114
Notes

118
Index
NOTES

INDEX

A
Abbott Laboratories, 85
Actin, 29
Actomyosin, 29
Adenine, 55
Adenosine diphosphate [ADP], 98
Adenosine triphosphate, 98, 99
Adirondack Mountains, New York, 9
Adrian, Lord Edgar Douglas 17, 18
Ajinomoto, 96
Alanine, 78, 90
Albert Einstein Institute, 61
Alpha-keto acid, 98
Alpha-keto glutarate, 98, 99
American Academy of Arts and Sciences, 87
American Cancer Society, 60, 86
American Chemical Society [ACS], 40, 100, 102, 111, 112
American Council of Learned Societies, 105, 106
American Philosophical Society, 38, 87
American Society for Biochemistry and Molecular Biology [ASBMB], 8, 58, 111
American Society of Biological Chemists [ASBC], 47, 60-62, 100, 111
American University, Beirut, 84
Americana Hotel, New York, 102
Amino acid analysis, 47, 68, 69, 76, 80, 93
Amino acid metabolism, 27, 68
Amino acid-peptide reactions, 36
Amino groups, 66
Amino-end groups, 68
Ammonium group, 66
Amylase, 90, 94
Anifinsen, Christian, 70, 74
Argine analysis, 33
Aromatic amino acid metabolism, 27
Ascaris, 91
Asparaginyl residue, 80
Aspartic
 acid, 78, 89
 residue, 80
Aspergillus, 96
Atlantic City, New Jersey, 61
Austen, Brian, 99
Automatic amino acid analyzer, 47, 67, 94
Avery, Oswald, 70-73
Avery Fisher Hall, New York City, New York, 103
Bacillus proteinase neutral [BPN'], 89
Bacillus subtilis, 88
Bacterial metabolism, 30
Baly, Edward Charles Cyril, 15
Basel, England, 34
Beadle, George W., 71
Beckman, Arnold, 20, 27
Beckman automatic amino acid analyzer, 47, 67
Beckman Center for the History of Chemistry, [Chemical Heritage Foundation], 38
Beckman DU, 25
Beckman Instruments, 67
Beijing, China, 108
Beit, Alfred, 28
Beit Fellowships of England, 28
Bell, Whitfield J. Jr., 87
Bergmann, Max, 33-36, 65, 69, 107
Bessemer process, 14
Bethesda, Maryland, 45
Biological oxidation, 29, 73
Blood plasma fractionation, 40
Bonner, James, 91, 92
Boyer, Paul, 53
Boston, Massachusetts, 105
Boston Symphony Orchestra, 103
Braunstein, Alexander, 18
Brenner, Max, 34
British Columbia, University of, Vancouver, 67
Broadway, New York, 6
Brooklyn, New York, 97
Brown, Douglas, 45, 46, 79, 80, 81
Brown, Harrison, 101, 104, 105
Brussels, Belgium, 101

C
C-14, 69, 70, 78, 84
Cairo, Egypt, 88
Calais, England, 31
California, University of,
 Berkeley, 8, 70
 Institute of Molecular Biology, 53, 54
 Los Angeles [UCLA], 45, 52-60, 65, 81, 87, 100, 113
 medical schools, 51
 San Diego, 54
 San Francisco, 51
 San Francisco Medical School, 8,
 Santa Barbara, 113
California Institute of Technology [Caltech], 25, 38, 84, 92, 112, 113
Calvin, Melvin, 103
Cambridge, England, 101
Cambridge Instrument Company, 20
Cambridge University, 22, 24, 26-31, 35, 65, 68, 72, 98, 104, 107, 108
Cambridge University Press, 28
Canada, 105
Carbohydrate metabolism, 27, 69
Carbon dioxide, 20, 21, 65
Carbonate-bicarbonate buffers, 20
Carbonic acid, 97
Carbonic anhydrase, 29, 65
Carboxy peptidase, 94, 95
Carboxyl groups, 66
Carlsberg Laboratory, 88
Carnegie-Mellon University, 113
Carter, Herbert E., 48
Catalase, 84, 85
Catalysis, 22
Cellular respiration, 29
CH₂O, 21
Charles Pfizer & Co.,
antibiotic production, 97
Cherbourg, France, 17
Chevalier, Maurice, 63
Chicago, Illinois, 105
Children's Hospital of Philadelphia, 113
China,
Chemical Industry, 96, 104-111
Cultural Revolution, 96, 105, 109, 110
Chloroplasts, 21, 23
Chromatography,
techniques, 67, 68, 93
paper, 68, 69
Chymotrypsin, 22, 89, 94, 95
Chymotryptic digestion, 85
Ciba Foundation, 92, 105
Citric Acid, 97
City College of New York, 4, 9
Clarke, Hans, 19, 34
Clorophyll, 21, 23, 25
Clorophyll A, 23
Clorophyll B, 23
Clorophyll-protein complex, 24, 26, 31
Cohen, Philip P., 60, 61
Cohn, Edwin, 36, 38, 75
Cold Spring Harbor Symposium [1949], 67-69
College of Medical Evangelists, San Bernardino, California, 51
College of Physicians and Surgeons, [P&S], 34, 61
Colorado, University of, 113
Colorimetric analysis, 33
Columbia College, 2, 4-6, 8, 9, 14, 19, 23, 25-27, 31, 33, 38, 40, 54, 61
Column chromatography, 68, 93
Committee for Scholarly Communication with the People's Republic of China, 105
Committee on Growth, 60
Connecticut Agricultural Experimental Station, 32
Copenhagen, Denmark, 19, 88
Copper enzymes, 29
Crick, Francis, 71-73
Crist, Raymond, 19
Crystalline pepsin, 22
Curcurbitaceae, 86
Cysteine, 86
Cystine, 33
Cytochrome c, 84-86, 88
Cytochrome oxidase [solubilizing], 24
Cytochromes, 28, 29, 73, 76, 84, 86, 92, 99
 isolation of, 29
Cytoplasm, 98

D
D-peptides, 66
Darby, Bill, 61
Dashkova, Ekaterina Romanovna, 87
Davenport, Horace W., 43
Dehydration reaction, 65
Dehydrogenase crystallization, 29
Dehydrogenases, 22, 98
Deisenhofer, Johann, 24
DeLange, Robert J., 92
Deoxyribonucleic acid [DNA], 70, 78, 92
 sequence determination, 70
Depression, The, 11
Dinitrophenylamino acids, 69
 recrystallization, 69
 synthesis, 69
Diphosphate, 98
Divalent metal ions, 65
Djerassi, Carl, 106
Dodecyl sulphate, 25
Dover, England, 31
E. I. du Pont de Nemours & Co., Inc., 26
DU Spectrophotometer, 46
Du Vigneaud, Vincent, 34
DuBridge, Lee, 25, 26
Duke University, 60, 63
Dulles, John Foster, 101
Dunn, Leslie, 19

E
Edelman, Gerald M. [Jerry], 73, 76
Edman, Pehr, 70, 101, 102
Edsall, John, 38, 75, 107, 113
Ehrlich, Paul, 75
Electrophoresis,
 apparatus, 76, 79, 80, 81, 93
 paper, 68, 69
Elvehjem, Conrad A. [Connie],
President, University of Wisconsin, 100
En-lai, Chou, 105-107
End-group analysis, 89
Engelhardt, Vladimir, 18
Enzyme isolation, 21, 22, 29
Ether, 23, 24
Ethylene, 55, 78, 79
Extracting insoluble proteins, 24

F
Ferric compounds, 21
Ferrous compounds, 21
Feurwerker, Al, 106
Fibrinogen, 37
Fischer, Edmond, 92
Flavin adenine dinucleotide [isolated], 29
Fletcher, James Chipman [Jim], 50
Florence, Italy, 17
Flosdorf, Earl W., 40
Flosdorf and Mudd Process, 40
Fluorodinitrobenzene method, 69
Fort Douglas, Utah, 43
Fraction collectors, 93, 94
Francis, Tommy, 32
Frasch process, 14
Friedmann, Ernst, 27
Fromageot, Claude, 70, 107
Fruton, Joseph S., 33-36, 42, 70

G
Gamma globulin, 37
General Aspects in Biochemistry, 58
General Electric [GE], 3, 25
Gerlough, Tillman, 36, 38, 41
Globulin, 39, 86
Glucose, 78
Glutamate dehydrogenase, 95, 97, 98
Glutamic acid, 78, 96
Goldthorpe, Harold C., 50
Goodman, Louis [Lou], 42, 43
Gordon, Roy G., 113
Göteborg University, Sweden, 74
Gravimetric amino acid analysis, 32
Guanosine diphosphate [GDP], 98
Guanosine triphosphate [GTP], 98
Guggenheim Fellowship, 23, 24, 32, 33, 60
Haberland, Margaret E. [Maggie], 100
Hallet, Mall, 7
Hammett, Louis, 14, 25
Handler, Philip, 58, 60-63, 103, 104, 107, 108
Harrar, George,
 director, Rockefeller Foundation, 105
Hardy, --, 25
Hartmut, Michel, 24
Hartree, Edward Francis, [Ted], 24, 29
Harvard University, 38, 75, 106, 112
 medical school, 112, 113
Hecht, Selig, 12-17, 20-23, 26, 27, 31, 38, 42, 107
Heidelberg, Germany, 24
Heidelberger, Michael, 23, 56, 72, 76
Helsinki, Finland, 17, 19
Heme attachment sites, 85
Heme enzymes, 29
Hemoglobin, 90, 91
 crystallization, 24
Herter, Christian, 101, 102
Hertzen, Alexander, 87
Heyrovsky, Jaroslav, 74
Higher Mathematics for Students of Chemistry and Physics, 13
Hill Reaction, 21
Hill, Robert, 21
Hill, Robert L. [Bob], 58, 63, 103
Histidine, 89-91
Histones, 91
 H3, 92
 H4, 92
Hofman, Klaus, 34
Holm, August, 75
Holmberg, Carl Gustav, 29, 30
Hopkins, Fredrick Gowland, 27, 30, 54, 108
Huber, Robert, 24
Hungarian Academy of Sciences, 29
Hydrochloric acid, 96
Hydrogen, 20, 91, 98, 99
Hydrogen electrode, 20
Hydrolity enzymes, 65
Hydrolityc reaction, 65, 66
Hydropobic forces, 66
Hydroxy-proline peptides, 34

I
Idaho, University of, 38
Immunoglobulin research, 75-77, 79
Inosinic Acid, 96
Insulin, 23, 95
 partial amino acid sequence, 68
Institute of Biophysics, Beijing, China, 108
Institute of Botany, Beijing, China, 109
Institute of Organic Chemistry, Latvia, Soviet Union, 95
Intermediary metabolism, 31, 69, 78, 79
International Conference of Biochemistry, Moscow [1961], 85, 108
International Congress of Physiology,
 Leningrad, [1935], 16-18
 Zürich, [1938], 27, 34
International Union of Biochemistry [IUB], 100-104,
 Moscow conference [1961], 101, 108
 New York City conference [1964], 101-103
International Union of Biochemistry and Molecular Biology
 [IUBMB], 103, 104
Intestinal mucosa, 66
Iron, 14, 65, 91
Irving, George, 34
Istanbul, Turkey, 17
International Union of Pure and Applied Chemistry [IUPAC],
 meeting [1951], 71, 101, 102

J
Jesup Lectures, 22
Jonxis, Jan, 29, 30
Journal of Biological Chemistry [JBC], 94, 101, 111, 112
Journal of General Physiology, 25
Journal of Organic Chemistry, 36
Journal of Parasitology, 28
Julliard College, 8

K
Karolinska Institute, 74
Keilin, Anna 29, 30
Keilin, David, 24, 27-31, 34, 35, 65, 72, 73, 84, 104, 107, 108
 director, Molteno Institute, 28
 editor, Parasitology, 28
 Quick Professor of Biology, 28
Kendrew, John, 24
Kissenger, Henry, 105
Kjeldahl nitrogen and sulfur determinations, 33
Kornberg, Arthur, 8, 70
Krebs Cycle, 98
Krebs, Edwin, 92
Kreil, Gunther, 85
Kühne, Friedrich Wilhelm, [Willy], 24, 107
Kunitz, Moses, 23, 95

L
L-amino acids, 98
L-peptides, 66
Lactic dehydrogenase, 98
Lactogenic hormone, 23
Langer, James S., 113
Laser, Hans, 29
Lehman, I. Robert, [Bob], 62
Lehninger, Albert L. [Al], 48, 82
Leningrad, Russia, 16-18
Leucine, 90
 amino peptidase, 66, 68, 94
 peptides, 66
Li, C. H., 70
Linderstrom-Lang, 88, 89
Lipid metabolism, 27
Lipkin, --, 3
Lithium atom spectrum, 113
Littleton, New Hampshire, 7
Liverpool, England, 15
Loeb, Jacques, 12, 15
Loehr, Max, 106
London, England, 19, 31, 77, 92, 93, 104
Lumry, Rufus, 67
Lund, Sweden, 29
Lyophilization, 40
Lysine, 78, 85

M
MacGregor, James, 10, 12
Macleod, Colin M., 70, 71
Magdalene College, 30
Magnesium, 65, 66
Malmström, Bo, 74
Mammalian Biochemistry, 58
Manganese, 65, 66
Mann, Thaddeus, 29, 65
Margoliash, Emmanuel, 84, 85, 94
Massachusetts, University of,
 Dartmouth, 59, 112
Matsubara, Hiroshi, 88, 89
McCarthy, Joseph R., Senator, 101, 102
McCarty, Maclyn, 70, 71
McFadden, Mary, 69, 80
McGill University, 85
McGraw-Hill, 71
Mechanistic Conception of Life, 12
Melbourne, Australia, 77
Mellor, J. W., 13
Merck & Co., Inc., 103
Metal ions, 65, 66
Metaphosphates, 42
Methionine, 55, 79
Meyerhof, Otto, 22, 29, 30, 31
Michaelis, Leonor, 12
Michigan, University of, 106
Milan, Italy, 17
Minneapolis, Minnesota, 61
Minnesota, University of, 53, 67
Mitochondria, 86, 98, 99
Molteno Institute for the Study of Parasitology, 28, 31
Molteno, Percy Alport, 28
Monod, Jacques, 101
Montreal, Canada, 85
Moore, Stanford, 34, 35, 47, 67-70, 73, 74, 93, 94, 102, 107
Moscow, Russia, 29, 85, 95, 102, 108, 110
Moss, Harry, 6
Moss-Hallet Agency, 6, 7
Monosodium-glutamate, 96, 97
Mudd, Stuart, 40
Murmansk, Soviet Union, 35
Music Corporation of America [MCA], 6
Myoglobin, 24

N
NAD, 98
NAD-specific enzyme, 99
NADH, 99
Naples, Italy, 15, 17
National Aeronautics and Space Administration [NASA], 50
National Academy of Science, 14, 18, 62, 100, 101, 103-105, 107, 108
National Institutes of Health [NIH], 32, 43, 47, 48, 50, 61, 67, 70, 80, 86, 102, 103, 112
National Research Council [NRC], 23, 60
National Science Foundation [NSF], 102, 103, 112
Nature, 85, 92
Nature of the Chemical Bond, The, 14
Nelson, John Maurice [Pop], 10, 12
Neuruberger, Albert, 77, 78
Neurath, Hans, 70, 93
Neurospora, 99
New Haven, Connecticut, 31, 42, 60
New South Wales, University of, [Australia], 77
New York City, New York, 1, 2, 8, 17, 26, 105
New York Hilton, 102
New York Philharmonic Hall, 103
New York Philharmonic Orchestra, 8, 103
New York Times, 87
New York University, 5, 9
Newfoundland, 35
Newton, Isaac, 88
Nickle, 66
Nicotinamide adenine dinucleotide phosphate [NADP], 98
Nitrogen, 41, 79, 86, 91
mustards, 65
Nixon, Richard M., 104, 105, 107
Nobel Prize, 24, 71-74, 92
Nolan, Chris, 80, 92
North Korea, 108
Northrop, John, 22, 23
Nova Scotia, 35
Novo Company, 88
Noyes, Albert W. Jr., [Al], 104
editor, Journal of the American Chemical Society, 104
Nuclear magnetic resonance [NMR], 48
Nucleotides, 78
Nuttall, George H. F., 28
director, Molteno Institute, 28
director, Parasitology, 28
Quick Professor of Biology, 28

O
Ochoa, Severo, 18
Odessa, Russia, 17
Office of Scientific Research and Development [OSRD], 43
Oligosaccharides, 90
Orthophosphates, 42
Osaka University, Japan, 88
Osgood, William Fogg, [textbook], 13
Ottesen, Martin, 89
Ovalbumin, 88
Oxford, England, 77, 78
Oxidation-reduction, 12, 22, 60
Oxidation-reduction enzymes, 28
Oxidative enzymes, 65
Oxygen, 78, 79, 90, 91

P
Palo Alto, California, 61
Papain, 76, 94
Paris, France, 17, 24, 29, 31, 70, 101
Parker, George Howard, 15
Pauling, Linus, 14, 38
Pavlov, Ivan Petrovich, 18
Pei-Sung, --, 109
Peking, China, 106
Penicillin research, 40
fermentation industry, 97
Pennino, Umberto, 7, 8
Pennsylvania, University of, 40
Peptidase studies, 65-67
Peptide
bonds, 66
degradation, 94
digestion, 66
isolation, 89
synthesis, 34, 36, 80
Pepys, Samuel, 30
Perutz, Max, 24
Petroleum ether, 23, 24
Phaeophytin, 25
Philadelphia, Pennsylvania, 113
Philadelphia Orchestra, 8
Phosphatases, 65
Phosphoric acid, 97
Phosphorylation, 92
Photoreception process, 15
Photosynthesis, 16, 20, 21, 22
Pickels, Edward G., 26, 31, 32
Pirene, Henri, 18
Pirie, Norman W. [Bill], 27, 30
Pittsburgh, Pennsylvania, 34
Pituitary hormone, 41
Plakalbumin, 88
Plasma proteins, 37
Pneumococci, 71
polysaccharides, 75, 76
Polarography, 74
Polglase, W. J. [Jim], 67
Polyphenol oxidases, 29
Polysaccharide, 90
antigens, 75, 76
Porter, Rodney, 73, 76-78
Press, Esther [wife], 7, 16, 18, 31, 33, 34, 37, 44, 56, 64, 85,
105, 106
Principles of Biochemistry, 1, 33, 58, 60-62, 71, 80-83
Proceedings of the National Academy of Science, [PNAS], 91
Procter & Gamble Company, 90, 94
Proline peptides, 34
Protein
analysis, 47, 68, 70
degredation, 94
digestion, 66
purification, 47
Protein Society, 47, 58, 63
Protein-nitrogen mustard reactions, 36
Proteinase, 66
papain, 68
Proteolytic enzymes, 47, 88, 94, 96, 110
Prothrombin, 37

R
Red Cross, 37
Reinhardt, William P., 113
Rhodes, Cecil, 28
Rhodes Scholarships, 28
Rhodopsin, 15, 23, 25, 26
extraction, 15, 24, 107
Riga, Latvia, 95
Rittenberg, Dave, 48
Rockefeller Foundation, 26, 32, 68, 86, 105
Rockefeller Institute, 20, 26, 33-35, 40, 44, 67, 70, 71, 94-97,
102
Rome, Italy, 16
Roosevelt, Franklin D., 44
Rosevear, John, 80
Rothfus, John, 80
Royal Academy of Sweden, 74
S
S-methyl group, 79
Salt Lake City, Utah, 32, 69
Samuels, Leo T., 43
San Fernando Valley, California, 46
San Francisco, California, 103, 105
Sanger, Fred, 68-70, 78, 85
Schroeder, Walter, 84
Science, 48
Seaborg, Glen, 106
Seattle, Washington, 67, 70, 92
Sedimentation, 26, 31
Sedimentation-diffusion, 89
Sequence determinations, 47, 49, 68, 69
Serine, 89
Serum albumin, 37
Shackman, Howard, 8
Shanghai, China, 106, 110
Shlaer, Simon, 17, 19, 20, 25
Sigma Chemical Company, 95
Smith, Emil
father, 1-5, 33
mother, 1-5, 33
brother, 1-4, 9, 30
memoirs, 1, 89
Russian background, 17, 87, 97, 101
Russian Ukraine background, 1
wife, [See Press, Esther]
Smith, Jeffrey Bernard [son], 9, 59, 112, 113
Smith, Joseph Donald [son], 9, 59, 112, 113
Social Science Research Council, 105, 106
Sodium dodecyl sulfate, 89
Sodium ion, 96
Sodium penicillin, 40, 107
Sodium/potassium phosphate buffer, 42
Soviet Academy of Sciences, 250th Anniversary, 18
Spackman, Darrel H., 47, 67, 69
Specialized Instrument Company [Spinco], 27, 31
Spectrophotometer, 25, 31, 46
Squibb [E. R. Squibb & Sons], 36-42, 44, 45, 56, 75, 76, 79, 93
St. George's Hospital, London, England, 99
St. Mary's Hospital Medical School, England, 77, 78
Stanford University, 62
Stazione Zoologica, [Naples, Italy], 17
Stein, William Howard, 34, 35, 47, 67-70, 73, 74, 93, 94, 107, 112
Stephenson, Marjory, 30
Stetten, DeWitt, 60, 61
Stockholm, Sweden, 19, 74
Straub, Ferenc Bruno, 29, 35
President, Hungary, 29
Streptococcal organism, 72
Streptomycin, 97
Subtilisin, 76, 88, 89, 90, 92, 94
Subtilisin Carlsberg, 89, 92
Subtilisin Novo, 89
Sulfur, 14, 79
Sulfur amino acid metabolism, 27
Sumner, James, 23
Svedburg, Thé, 26
Sydney, Australia, 77
Syntex Corporation, 62
Szeged, Hungary, 29
Szent-Györgyi, Albert, 29

T
Tabor, Herbert, 111, 112
Tang, Nancy, 106, 107
Tanglewood, Massachusetts, 103
Tatum, Edward, 71
Thackray, Arnold, 87
Thio-ether, 79
Thomas, Albert, [Senator, Utah], 43
Thompson, Edward O. P. [Ted], 68, 69, 77, 78
Tiselius, Arne, 71, 72, 105
Tiselius electrophoresis apparatus, 45
Tishlet, Max, 103
Toscanini, Arturo, 8
Trelease, Sam, 19
Trendelenburg, Walter, 18
Triosephosphate dehydrogenase, 98
Triphosphates, 98
Trypsin, 22, 89, 94, 95
Tryptic digestion, 85
Tryptic peptides, 85
Tryptophan, 33, 78, 86, 90
Tuppy, Hans, 85
Tyrosine, 33, 86, 90

U
Ultracentrifuge, analytic, 32, 46, 81
preparative, 32, 46
Urease, 23, 66
Urey, Harold, 13, 14, 48,
Uricase, 29
Utah, University of, 32, 42-45, 49-53, 60, 65-67, 79, 80, 82, 100

V
van der Waal's forces, 66, 77
interactions, 67
Vanderbilt University, 61
Vassar University, 106
Vickery, H. B., 107
Vienna, Austria, 85, 101
Wald, George, 23
Warburg manometer, 46
Warburg, Otto, 20-22, 29
Washington, DC, 60, 101, 103, 105, 107
Watson, James D., 71, 73
White, Abraham [Abe], 23, 32, 33, 42, 58, 60-63
White Russia [Belorussia], 1
Williams, John W. [Jack], 26
Wintersteiner, Oskar, 40
Wintrobe, Maxwell [Max], 43, 50-52
Wisconsin, University of, 26, 60, 100
Woods Hole, Massachusetts, 61
World War I, 28, 38
World War II, 30, 96
Army, U.S., 39
Berchtesgaden, 30
Chamberlain, Neville, [declaration of war], 31
chemical Warfare, 36, 65
effects on chemical production, 97
Hitler, 31
Malaya, 39
Marines, U.S., 39
Navy Medical Service, U.S., 45
Navy, U.S., 39
Pearl Harbor, 39
Poland, Invasion of, 31
Worthington Biochemical, 95

X
X-ray crystallography, 48, 49, 91, 99

Y
Yale University, 42, 54, 60
Ying-lai, Wang, 110
YMCA [New York City], 7

Z
Zamecnik, Paul, 34, 35
Zinc, 66
 enzyme, 29, 65